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Abstract. We bring together foundational theories of meaning and a
mathematical formalism of artificial general intelligence to provide a
mechanistic explanation of meaning, communication and symbol emer-
gence. We establish circumstances under which a machine might mean
what we think it means by what it says, or comprehend what we mean by
what we say. We conclude that a language model such as ChatGPT does
not comprehend or engage in meaningful communication with humans,
though it may exhibit complex behaviours such as theory of mind1.

1 Introduction

Linguists and philosophers have offered various accounts of the behaviour of lan-
guage, meaning and the human mind. Computer scientists have posited mech-
anisms to replicate these variously described behaviours piecemeal. The former
is a top-down approach, while the latter is bottom up. Unfortunately, it is diffi-
cult to connect the two. Large language models (LLMs) such as ChatGPT are
a bottom up attempt to capture the behaviour of written language, and are re-
markably good at giving human-like responses to questions [2]. Yet it is unclear
the extent to which an LLM actually means what it says or understands what
we mean. A true artificial general intelligence (AGI) should not just parrot what
we expect, but respond to what we mean and mean what it says. Yet how we
would we know if that were the case? Computers represent syntax, and from
correlations in syntax an LLM is supposed to glean meaning. However, mean-
ing is not well defined in computational terms. We need to connect top-down
descriptions of meaning to bottom-up computation. What is meaning, and how
might we compute it?

1.1 Grice’s foundational theory of meaning

Grice’s foundational theory of meaning [3] holds that meaning is what the
speaker intends to convey to the listener. Grice gave an illustrative example,

[the speaker] α means m by uttering u iff α intends in uttering u that
1. his audience come to believe m,
2. his audience recognize this intention [called m-intention], and
3. (1) occur on the basis of (2). [4]

1 Technical appendices are available on GitHub [1].
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That Grice’s theory is foundational means it specifies the facts in virtue of which
expressions have particular semantic properties (as opposed to describing those
semantic properties). A foundational theory is named as such because it sits
below semantic theories. It is illustrative of what we’re attempting (connect
bottom up computation to a top down description).

1.2 A foundational theory of foundational theories

Were we to accept that meaning is in virtue of m-intent2 , then from what does
that arise? M-intent should not be conflated with intent in general because it
pertains to what one means by an expression, whereas intent more generally is
any goal in service of which decisions are made. The former stems from the latter
[7], and so there exists a theory arguing that meaning exists in virtue of one’s
intent in the sense of goals. Grice’s theories are better established and widely
accepted with respect to meaning, but these theories are not mutually exclusive
and the depiction of meaning as in virtue of intent in general is a bridge we
can use to connect Grice’s top down description to bottom-up computational
processes. This is because it explains intent in virtue of inductive inference,
to argue that meaningful communication with an AI, or any organism, requires
similar feelings and experiences, in order to construct similar goals and “solutions
to tasks” [7] (an argument formed in relation to the Fermi Paradox [8]). This
explanation was too vague to be of significance for engineering. For example it
assumed a measure, “weakness”, which was not well defined. However, weakness
is well defined in a more recent formalism of artificial general intelligence (AGI)
and enactive cognition [1], so we will instead reformulate the theory using that
formalism, extending it to account for meaningful communication. We begin
with cognition formalised using tasks. We then formalise an organism using
tasks to provide a novel account of preferences, symbol systems and meaningful
communication. We then describe circumstances under which an organism might
mean what we think it means by what it says, or infer what we mean by what
we say.

2 Meaning, from the top down

Intent only exists in virtue of a task one is undertaking [7]. A task is what
we get if we add context to intent, expressing what is relevant about both the
agent and the environment. A task can be used to formalise enactive cognition
[9], discarding notions of agent and environment in favour of a set of decision
2 We note there are other well-known and widely accepted descriptions of meaning

(Russell, Frege, Searle, Davidson, Wittgenstein, Lewis, Kripke etc), some of which
we allude to and even touch upon as part of our formalism. We also acknowledge
Grice later expanded upon the notion of m-intent [5, 6]. However, due to paper
length restrictions, we are limited in what we discuss. As the ability to infer intent
seems most novel in the context of AGI, we focus our discussion on the early Gricean
characterisation of meaning.
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problems [7, 1]. A task is something which is completed, like a goal, so intent
is formalised like a goal [10]. A goal is a set of criteria, and if those criteria
are satisfied, then it is satisfied and the task complete. To formalise meaning
we must avoid grounding problems [11]. As such these criteria are grounded by
representing the environment, of which cognition is part, as a set of declarative
programs [12] of which the universe is the interpreter [13]:

Definition 1 (environment).

– We assume a set Φ whose elements we call states, one of which we single
out as the present state.

– A declarative program is a function f : Φ → {true, false}, and we write
P for the set of all declarative programs. By an objective truth about a
state ϕ, we mean a declarative program f such that f(ϕ) = true.

Definition 2 (implementable language).

– V = {V ⊂ P : V is finite} is a set whose elements we call vocabularies,
one of which3 we single out as the vocabulary v.

– Lv = {l ⊆ v : ∃ϕ ∈ Φ (∀p ∈ l : p(ϕ) = true)} is a set whose elements we call
statements. Lv follows Φ and v, and is called implementable language.

– l ∈ Lv is true iff the present state is ϕ and ∀p ∈ l : p(ϕ) = true.
– The extension of a statement a ∈ Lv is Za = {b ∈ Lv : a ⊆ b}.
– The extension of a set of statements A ⊆ Lv is ZA =

⋃
a∈A

Za.

(Notation) Z with a subscript is the extension of the subscript4.

A goal can now be expressed as a statement in an implementable language. An
implementable language represents sensorimotor circuitry5 with which cognition
is enacted. It is not natural language, but a dyadic system with exact meaning.
Peircean semiosis [14] is integrated to explain natural language. Peirce defined
a symbol as a sign (E.G. the word “pain”), a referent (E.G. the experience of
pain), and an interpretant which links the two, “determining the effect upon" the
organism. A goal arguably functions as an interpretant because it determines the
effect of a situation upon an organism that pursues it [7]. Rather than formulate
a task and then rehash the argument that a task is a symbol, we’ll just formalise
a symbol using the existing definition of a task [1, definition 3]:

Definition 3 (v-task). For a chosen v, a task α is a triple ⟨Sα, Dα,Mα⟩, and
Γv is the set of all tasks given v. Give a task α:

– Sα ⊂ Lv is a set whose elements we call situations of α.
– Sα has the extension ZSα

, whose elements we call decisions of α.
– Dα = {z ∈ ZSα

: z is correct} is the set of all decisions which complete α.
3 The vocabulary v we single out represents the sensorimotor circuitry with which an

organism enacts cognition - their brain, body, local environment and so forth.
4 e.g. Zs is the extension of s.
5 Mind, body, local environment etc.
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– Mα = {l ∈ Lv : ZSα
∩ Zl = Dα} whose elements we call models of α.

(Notation) If ω ∈ Γv, then we will use subscript ω to signify parts of ω, meaning
one should assume ω = ⟨Sω, Dω,Mω⟩ even if that isn’t written.

(How a task is completed) Assume we’ve a v-task ω and a hypothesis h ∈ Lv s.t.

1. we are presented with a situation s ∈ Sω, and
2. we must select a decision z ∈ Zs ∩ Zh.
3. If z ∈ Dω, then z is correct and the task is complete. This occurs if h ∈ Mω.

Definition 4 (symbol). A task α is also a Peircean symbol:

– s ∈ Sα is a sign of α.
– d ∈ Dα is the effect of α upon one who perceives it. d may be sensorimotor

activity associated with perception, and thus a referent.
– m ∈ Mα is an interpretant linking signs to referents.

Tasks may be divided into narrower child tasks, or merged into parent tasks.

Definition 5 (child, parent and weakness). A symbol α is a child of ω if
Sα ⊂ Sω and Dα ⊆ Dω. This is written α ⊏ ω. We call |Dα| the weakness of a
symbol α, and a parent is weaker than its children.

2.1 Extending the formalism

The child and parent relation means a symbol is also a symbol system in that
it can be subdivided into child symbols [7]. With this in mind, we can define an
organism that derives symbols from its experiences, preferences and feelings.

Definition 6 (organism). An organism o is a quintuple ⟨vo, eo, so, no, fo⟩, and
the set of all such quintuples is O where:

– vo is a vocabulary we single out as belonging to this organism6.
– We assume a vo-task β wherein Sβ is every situation in which o has made

a decision, and Dβ contains every such decision. Given the set Γvo
of all

tasks, eo = {ω ∈ Γvo
: ω ⊏ β} is a set whose members we call experiences.

– A symbol system so = {α ∈ Γvo
: there exists ω ∈ eo where Mα∩Mω ̸= ∅}

is a set whose members we call symbols. so is the set of every task to which
it is possible to generalise (see [1, definition 5]) from an element of eo.

– no : so → N is a function we call preferences.
– fo : so → fo is a function, and fo ⊂ Lvo

a set whose elements we call
feelings, being the reward, qualia etc, from which preferences arise7.

6 The corresponding Lvo is all sensorimotor activity in which the organism may engage.
7 Note that this assumes qualia, preferences and so forth are part of physical reality,

which means they are sets of declarative programs.
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Each symbol in so shares an interpretant at least one experience8. This is so
feelings fo ascribed to symbols can be grounded in experience. Humans are
given impetus by a complex balance of feelings (reward signals, qualia etc). It is
arguable that feelings eventually determine all value judgements [10]. As Hume
pointed out, one cannot derive a statement of what ought to be from a statement
of what is. Feelings are an ought from which one may derive all other oughts.
If meaning is about intent, then the impetus that gives rise to that intent is an
intrinsic part of all meaning [8]. Intent is a goal. A goal is statement of what
ought to be that one tries to make into a description of what is, by altering the
world to fit with ought to be. We assume feelings are consequence of natural
selection, and so explain meaning in virtue of a mechanistic process. Each l ∈ L
represents sensorimotor activity, which from a materialist perspective includes
feelings. Thus, fo is a function from symbols to sensorimotor activity. Statements
and symbols “mean something” to the organism if the organism can ascribe
feelings to them. As every symbol in so contains an interpretant which is part
of the organism’s experience, the organism can ascribe feelings to all symbols on
the basis of that experience. If one is not concerned with qualia [16, 17], then
feelings may be simulated with “reward” functions. However, to simulate feelings
that result in human-like behaviour is a more difficult proposition. Rather than
trying to describe human-like feelings, we simplify our analysis by assuming the
preferences [18] no which are determined by experience of feelings.

2.2 Interpretation

The situation at hand s ∈ Lvo
is a statement o experiences as a sign and then

interprets using α ∈ so s.t. s ∈ Sα, to decide d ∈ Zs ∩ ZMα .

Definition 7 (interpretation). Interpretation is a sequence of steps:

1. The situation at hand s ∈ Lvo
signifies a symbol α ∈ so if s ∈ Sα.

2. sso = {α ∈ so : s ∈ Sα} is the set of all symbols which s signifies.
3. If sso ̸= ∅ then s means something to the organism in the sense that there

are feelings which can be ascribed to symbols in sso.
4. If s means something, then o uses α ∈ argmax

ω∈sso

no(ω) to interpret s.

5. The interpretation is a decision d ∈ Zs ∩ ZMα
9.

3 Communication of meaning

We develop our explanation in four parts. First, we define exactly what it means
for an organism to affect and be affected by others. Second, we examine how one
8 A symbol system is every task to which one may generalise from one’s experiences.

Only finitely many symbols may be entertained. In claiming our formalism pertains
to meaning in natural language we are rejecting arguments, such as those of Block
and Fodor [15], that a human can entertain an infinity of propositions (because time
and memory are assumed to be finite, which is why vo is finite).

9 How an organism responds to a sign that means nothing is beyond this paper’s scope.
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organism may anticipate the behaviour (by inferring the end it serves) of another
or order to change how they are affected. Third, we examine how said organism
may, having anticipated the behaviour of the other, intervene to manipulate the
other’s behaviour to their benefit (so that the now latter affects the former in a
more positive way). And finally, we examine what happens when each organism
is attempting to manipulate the another. Each anticipates the other’s manip-
ulation, because each anticipates the other’s behaviour by inferring its intent.
An organism can then attempt to deceive the other organism (continue the ma-
nipulative approach), or attempt to co-operate (communicate in good faith), a
choice resembling an iterated prisoner’s dilemma.

We assume organisms make decisions based upon preferences, but prefer-
ences are not arbitrary. Feelings and thus preferences exist in virtue of natural
selection, which to some extent must favour rational behaviour (to the extent
that selection is significantly impacted). In computer science terms this might
be understood as alignment. One’s feelings are the result of alignment by genetic
algorithm, and one’s preferences are the result of reinforcement learning using
those feelings (to determine reward). Thus we assume preferences are a balance
of what is rational, and what is tolerably irrational, given the pressures of nat-
ural selection. We call this balance reasonably performant. The specifics of
inductive inference are beyond the scope of this paper, however definitions and
formal proofs pertaining to inductive inference from child to parent tasks are in-
cluded in the appendix [1]. We assume the necessary inductive capabilities when
we assume organisms are reasonably performant.

3.1 Ascribing intent

Definition 8 (affect). To affect an organism o is to cause it to make a different
decision than it otherwise would have. k affects o if o would have made a decision
d, but as a result of a decision c made by k, o makes decision g ̸= d.

Let k and o be organisms. If k affects o, and assuming vo is sufficient to allow
o to distinguish when it is affected by k from when it is not (meaning all else
being equal k’s interventions are distinguishable by the presence of an identity
[1, definition 13]), then there exists experience ζko ∈ eo such that d ∈ Dζk

o
if o

is affected by k. ζko is an ostensive definition [19] of k’s intent (meaning it is a
child task from which we may infer the parent representing k’s most likely intent
and thus future behaviour) [7]. In the absence of more information, the symbol
most likely to represent k′s intent is the weakest [7], meaning α ∈ so s.t. |Zα| is
maximised. However, because o assumes k has similar feelings and preferences
[7, 10]10 no is an approximation of what k will do. Accordingly the symbol most
likely to represent k’s intent would be

γk
o ∈ argmax

α∈K
|Zα| s.t. K = argmax

α∈Γ k
o

no(α) and Γ k
o = {ω ∈ Γvo

: Mζk
o
∩Mω ̸= ∅}

10 Members of a species tend to have similar feelings, experiences and thus preferences.
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The above is the “weakest” of goals preferred by o which, if pursued by k, would
explain why k has affected o as it has.

3.2 From manipulation to meaningful communication

We’ve explained inference of intent in counterfactual terms, answering “if places
were exchanged, what would cause o to act like k?”. Intent here is “what is k
trying to achieve by affecting o”, rather than just “what is k trying to achieve”.

Means of manipulation: In virtue of being reasonably performant organism
o infers the intent of an organism k that affects o. o must do this in order to
plan ahead and ensure its own needs will be met. However o can go further than
merely reacting to what it anticipates k will do. It can also attempt to influence
what k will do. If being reasonably performant necessitates o represent k’s intent
because k affects o, then it may also necessitate o affect k to the extent that
doing so will change how k affects o. This describes what might be commonly
understood as an attempt at manipulation.

Communication: If both o and k are reasonably performant and affect one an-
other, each will attempt to manipulate the other. Furthermore, being reasonably
performant and ascribing intent to one another’s behaviour, each must account
for the manipulative intent of the other when attempting to manipulate said
other. Subsequently each organism must account for how its own manipulative
intent will be perceived by the other. As in a certain class of iterated prisoner’s
dilemma, the rational choice may then be to co-operate.

Furthermore if there is sufficient profit in affecting another’s behaviour, then
knowing one’s own intent is perceived by that other and that the other will
change its behaviour according to one’s own intent, it makes sense to actually
change one’s own intent in order to affect the other. This bears out experimen-
tally in reinforcement learning with extended environments [20]. The rational
course of action is to actually have co-operative intent, assuming k can perceive
o’s intent correctly, and that k will reciprocate in kind11. Inductive inference (see
appendix [1]) undertaken with co-operative intent would, if undertaken by rea-
sonably performant organisms, ensure the organisms in a population have pref-
erences that favour symbols that mean (in a behaviourally approximate manner)
similar things to all members of the population. If organisms are attempting to
co-operate, and can infer one another’s intent, then repeated interactions would
give rise to signalling conventions we might call natural language.

Meaning: Let us reframe these ideas using the example from the introduction.
We’ll say two symbols α ∈ sk and ω ∈ so are roughly equivalent (written α ≈ ω)
to mean feelings, experiences and thus preferences associated with a symbol are
in some sense the same for two organisms (meaning if α ≈ ω then fk(α) ≈ fo(ω)
etc).
11 Which again hinges upon preferences.
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k means α ∈ sk by deciding u and affecting o iff k intends in deciding u:
1. that o interpets the situation at hand with ω ∈ so s.t. ω ≈ α,
2. o recognize this intention, for example by predicting it according to

γk
o ∈ argmax

α∈K
|Zα| s.t. K = argmax

α∈Γ k
o

no(α), Γ
k
o = {ω ∈ Γvo

: Mζk
o
∩Mω ̸= ∅}

3. and (1) occur on the basis of (2), because k’s intent is to co-operate
and so it will interpret the situation at hand using what it has inferred
of o’s intent.

Note that the above describes co-operative communication. Prerequisites for the
comprehension of meaning follow from the above:

1. Organisms must be able to affect one another.
2. Organisms must have similar feelings, and
3. similar experiences, so so and sk contain roughly equivalent symbols.
4. Similar preferences then inform the correct inference of intent.
5. Finally, all this assumes organisms are reasonably performant.

4 Talking to a machine

LLMs and humans are able to affect one another, and have similar preferences
even to the extent that LLMs appear to exhibit theory of mind [2]. However,
while mimicking human preferences after the fact gives the appearance of holding
values and beliefs, an LLM has no impetus because it is not compelled by feelings,
and so cannot entertain roughly equivalent symbols. This is not to say we cannot
reverse engineer the complex balance of human-like feelings, merely that we have
not. If an LLM has any impetus at all, it is to be found in our prompts. It is
reminiscent of a mirror test, which is a means of determining whether animals
are self aware. For example, a cat seeing itself in the mirror may attempt to
attack what it sees, not realising what it sees is not another animal but its own
reflection. In an LLM we face a mirror test of our own, but instead of light
it reflects our own written language back at us. We then ascribe motives and
feelings to that language, because we have evolved to infer the intent of organisms
compelled by feelings [7]. An LLM hijacks the shortcuts we use to understand one
another (it takes advantage of the fact that we assume others are motivated by
similar feelings [10]). We’ve a history of ascribing feelings and agency to things
possessed of neither. In the 1970s, a chatbot named ELIZA made headlines as
its users attributed feelings and motives to its words [21]. Like ELIZA, today’s
LLMs not only do not mean what we think they mean by what they say, but do
not mean anything at all. This is not an indictment of LLMs trained to mimic
human preferences. The meaning we ascribe to their behaviour can be useful,
even if that behaviour was not intended to mean anything.
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The Hall of Mirrors: Even if we were to approximate human feelings, an
LLM like ChatGPT is not reasonably performant. It is maladaptive, requiring
an abundance of training data. This may be because training does not optimise
for a weak representation, but settles for any function fitting the data12 [7].
Returning to mirror analogies, imagine a hall of mirrors reflecting an object
from different angles. A weak or simple representation would be one symbol
α ∈ so representing the object, which is then interpreted from the perspectives
a, b, c, d ∈ Sα of each mirror. A needlessly convoluted representation of the same
would instead interpret a, b, c and d using different symbols. These would be
α’s children ω, γ, δ, σ ⊏ α such that a ∈ Sω, b ∈ Sγ , c ∈ Sδ, d ∈ Sσ. This
latter representation fails to exploit what is common between perspectives, which
might allow it to generalise [7] to new perspectives. That an LLM may not
learn sufficiently weak representations seems consistent with their flaws. One
well documented example of this is how an LLM may convincingly mimic yet
fail to understand arithmetic [22], but such flaws may more subtly manifest
elsewhere. For example, when we queried Bing Chat (on the 2nd of February 2023
[1, p.11]) with the name and location of a relatively unknown individual who
had several professions and hobbies mentioned on different sites, Bing concluded
that different people with this name lived in the area, each one having a different
hobby or profession.

Incomprehensibility: If we aspire to build machines that mean what we think
they mean by what they say, then it would be necessary to give the machine im-
petus by simulating human feelings. It is interesting to consider where this may
lead. If we do not get the balance of feelings quite right, we might create an
organism that means what it says, but whose meanings are utterly incompre-
hensible to us because the resulting preferences are unaligned with ours. This
is not to say such an organism would be dangerous. Alignment may be more a
matter of meaningful communication than safety. In the introduction we men-
tioned ideas on which this paper was founded were used to relate the Fermi
paradox to control of and communication with an AGI [8]. We can extend that
notion. Assume we are affected by an organism. If the events befalling us are
set in motion by preferences entirely unlike our own, then we would fail to as-
cribe the correct intent to the organism. We may fail entirely to realise there
is an organism, or may ascribe many different intents as in the hall of mirrors
analogy. Furthermore, vo determines what can or cannot be comprehended by
an organism [1]. It may be that vo contains nothing akin to the contents of vk,
making o is incapable of representing and thus comprehending k’s intent.
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