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Abstract. To make accurate inferences in an interactive setting, an
agent must not confuse passive observation of events with having inter-
vened to cause those events. The “do” operator formalises interventions
so that we may reason about their effect. Yet there exist pareto optimal
mathematical formalisms of general intelligence in an interactive set-
ting which, presupposing no explicit representation of intervention, make
maximally accurate inferences. We examine one such formalism. We show
that in the absence of a do operator, an intervention can be represented
by a variable. We then argue that variables are abstractions, and that
need to explicitly represent interventions in advance arises only because
we presuppose these sorts of abstractions. The aforementioned formal-
ism avoids this and so, initial conditions permitting, representations of
relevant causal interventions will emerge through induction. These emer-
gent abstractions function as representations of one’s self and of any other
object, inasmuch as the interventions of those objects impact the satis-
faction of goals. We argue (with reference to theory of mind) that this
explains how one might reason about one’s own identity and intent, those
of others, of one’s own as perceived by others and so on. In a narrow sense
this describes what it is to be aware, and is a mechanistic explanation of
aspects of consciousness1.

1 Introduction

An agent that interacts in the world cannot make accurate inferences unless it
distinguishes the passive observation of an event from it having intervened to
cause that event [2, 3]. Say we had two variables R,C ∈ {true, false}, where:

C = true ↔ “Larry put on a raincoat" and R = true ↔ “It rained"

Assume we have seen it rain only when Larry had his raincoat on, and he has
only been seen in his raincoat during periods of rain. Based on these obser-
vations, the conditional probability of it raining if Larry is wearing his rain-
coat is p(R = true | C = true) = 1. A naive interpretation of p(R = true |
C = true) = 1 is that we can make it rain by forcing Larry to wear a rain-
coat, which is absurd. When we intervene to make Larry wear a raincoat, the
event that takes place is not “Larry put on a raincoat" but actually “Larry
1 Technical appendices are available on GitHub [1].
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put on a raincoat because we forced him to". It is not that Bayesian proba-
bility is wrong, but interactivity complicates matters. By intervening we are
acting upon the system from the outside, to disconnect those factors influ-
encing the choice of clothing. The “do” operator [4, 5] resolves this in that
do[C = true] represents the intervention. It allows us to express notions such as
p(R = true | do[C = true]) = p(R = true) ̸= p(R = true | C = true) = 1, which
is to say that intervening to force Larry to wear a raincoat has no effect on the
probability of rain, but passively observing Larry put on a raincoat still indicates
rain with probability 1. To paraphrase Judea Pearl, one variable causes another
if the latter listens for the former [2]. The variable R does not listen to the C.
C however does listen to R, meaning to identify cause and effect imposes a hier-
archy on one’s representation of the world (usually represented with a directed
acyclic graph). This suggests that, if accurate inductive inference is desired, we
must presuppose something akin to the do operator. Yet there exist pareto op-
timal mathematical formalisms of general intelligence in an interactive setting
which, given no explicit representation of intervention, make maximally accurate
inferences [6, 7, 1]. Given that the distinction between observation and interven-
tion is necessary to make accurate inductive inferences in an interactive setting,
this might seem to present us with a contradiction. One cannot accurately infer
an equivalent of the do operator if such a thing is a necessary precondition of
accurate inductive inference. We resolve this first by showing that we can substi-
tute an explicit do operator with variables representing each intervention. Then,
using one of the aforementioned formalisms, we argue that need to explicitly rep-
resent intervention as a variable only arises if we presuppose abstractions [8] like
variables. If induction does not depend upon abstractions as given, then abstrac-
tions representing interventions may emerge through inductive inference. Beyond
distinguishing passive observation from the consequences of one’s own interven-
tions, these emergent abstractions can also distinguish between the interventions
and observations of others. This necessitates the construction of abstract iden-
tities and intents. We suggest this is a mechanistic explanation of awareness, in
a narrow sense of the term. By narrow we mean aspects of functional, access,
and perhaps even phenomenal consciousness, and only if the latter is defined
as “first person functional consciousness” [9] in the sense discussed by Boltuc in
The Engineering Thesis on Machine Consciousness [10]; recognising phenomenal
content such as light, sound and movement with one’s body at the centre of it
all [11]. To limit scope, we do not address “the hard problem” [12].

2 Additional background

This section introduces relevant background material. The reader may wish to
skip ahead to section 3 and refer here as needed. In recognition of the philo-
sophical nature of this topic we present arguments rather than mathematical
proofs, and the paper should be understandable without delving too deeply into
the math. While all relevant definitions are given here, context is provided by
the papers in which these definitions originated, and in technical appendices
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available on GitHub [1]. To those more familiar with the agent environment
paradigm, how exactly these definitions formalise cognition may seem unclear.
Neither agent nor environment are defined. This is because it is a formalism of
enactivism [13], which holds that cognition extends into and is enacted within
the environment. What then constitutes the agent is unclear. In light of this,
and in the absence of any need to define an agent absent an environment, why
preserve the distinction? Subsequently, the agent and environment are merged
to form a task [7], which may be understood as context specific manifestations of
intent, or snapshots of what bears some resemblance to “Being-in-the-world” as
described by Heidegger [14]. In simpler terms, this reduces cognition to a finite
set of decision problems [7]. One infers a model from past interactions, and then
makes a decision based upon that model (akin to a supervised learner fitting a
function to labelled data, then using that to generate labels for unlabelled data).
Arguments as to why only finite sets are relevant are beyond the scope of this
paper, and are addressed elsewhere [15, p. 2].

2.1 List of definitions

Refer to the technical appendices [1] for further information regarding definitions.

Definition 1 (environment).

– We assume a set Φ whose elements we call states, one of which we single
out as the present state.

– A declarative program is a function f : Φ → {true, false}, and we write
P for the set of all declarative programs. By an objective truth about a
state ϕ, we mean a declarative program f such that f(ϕ) = true.

Definition 2 (implementable language).

– V = {V ⊂ P : V is finite} is a set whose elements we call vocabularies,
one of which2 we single out as the vocabulary v for an implementable
language.

– Lv = {l ⊆ v : ∃ϕ ∈ Φ (∀p ∈ l : p(ϕ) = true)} is a set whose elements we
call statements. Lv follows from Φ and v. We call Lv an implementable
language.

– l ∈ Lv is true iff the present state is ϕ and ∀p ∈ l : p(ϕ) = true.
– The extension of a statement a ∈ Lv is Za = {b ∈ Lv : a ⊆ b}.
– The extension of a set of statements A ⊆ Lv is ZA =

⋃
a∈A

Za.

(Notation) Z with a subscript is the extension of the subscript3.

Definition 3 (v-task). For a chosen v, a task α is ⟨Sα, Dα,Mα⟩ where:

2 The vocabulary v we single out represents the sensorimotor circuitry with which an
organism enacts cognition - their brain, body, local environment and so forth.

3 e.g. Zs is the extension of s.
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– Sα ⊂ Lv is a set whose elements we call situations of α.
– Sα has the extension ZSα

, whose elements we call decisions of α.
– Dα = {z ∈ ZSα

: z is correct} is the set of all decisions which complete α.
– Mα = {l ∈ Lv : ZSα ∩ Zl = Dα} whose elements we call models of α.

Γv is the set of all tasks for our chosen v ∈ V.

(Notation) If ω ∈ Γv, then we will use subscript ω to signify parts of ω, meaning
one should assume ω = ⟨Sω, Dω,Mω⟩ even if that isn’t written.

(How a task is completed) Assume we’ve a v-task ω and a hypothesis h ∈ Lv s.t.

1. we are presented with a situation s ∈ Sω, and
2. we must select a decision z ∈ Zs ∩ Zh.
3. If z ∈ Dω, then z is correct and the task is complete. This occurs if h ∈ Mω.

Definition 4 (probability). We assume a uniform distribution over Γv.

Definition 5 (generalisation). A statement l generalises to α ∈ Γv iff l ∈ Mα.
We say l generalises from α to v-task ω if we first obtain l from Mα and then
find it generalises to ω.

Definition 6 (child and parent). A v-task α is a child of v-task ω if Sα ⊂ Sω

and Dα ⊆ Dω. This is written as α ⊏ ω. If α ⊏ ω then ω is then a parent of α.

Definition 7 (weakness). The weakness of l ∈ Lv is |Zl|.

Definition 8 (induction). α and ω are v-tasks such that α ⊏ ω. Assume we
are given a proxy qv ∈ Q, the complete definition of α and the knowledge that
α ⊏ ω. We are not given the definition of ω. The process of induction would
proceed as follows:

1. Obtain a hypothesis by computing a model h ∈ argmax
m∈Mα

qv(m).

2. If h ∈ Mω, then we have generalised from α to ω.

2.2 Premises

For the purpose of argument we will adopt the following premises:

(prem. 1) To maximise the probability that induction generalises from
α to ω, it is necessary and sufficient to maximise weakness. [7, 1]

For our argument this optimality is less important than the representation of
interventions it implies. In any case the utility of weakness as a proxy is not
limited to lossless representations or optimal performance. Approximation may
be achieved by selectively forgetting outliers4, a parallel to how selective amnesia
4 For example, were we trying to generalise from α to ω (where α ⊏ ω) and knew

the definition of α contained misleading errors, we might selectively forget outlying
decisions in α to create a child γ = ⟨Sγ , Dγ ,Mγ⟩ (where γ ⊏ α) such that Mγ

contained far weaker hypotheses than Mα.



Emergent Causality & the Foundation of Consciousness 5

[16] can help humans reduce the world to simple dichotomies [17] or confirm pre-
conceptions [18]. Likewise, a task expresses a threshold beyond which decisions
are “good enough” [19]. The proof of optimality merely establishes the upper
bound for generalisation. As a second premise, we shall require the emergence
or presupposition of representations of interventions:

(prem. 2) To make accurate inductive inferences in an interactive set-
ting, an agent must not confuse the passive observation of an event with
having intervened to cause that event. [2]

3 Emergent Causality

The formalism does not presuppose an operator representing intervention. Given
our premises, we must conclude from this that either that (prem. 1) is false, or
induction as in definition 8 will distinguish passive observation of an event from
having intervened to cause that event.

3.1 The do operator as a variable in disguise

In the introduction we discussed an example involving binary variables R (rain)
and C (raincoat). From p(R = true | C = true) = 1 we drew the absurd
conclusion that if we intervene to make C = true, we can make it rain. The true
relationship between R and C is explained by a directed acyclic graph:

C R

The intervention do[C = c] deletes an edge (because rain can have no effect on
the presence of a coat we’ve already forced Larry to wear) giving the following:

C R

By intervening in the system, we are acting upon it from the outside. In doing so
we disconnect those factors influencing the choice of clothing. The do operator
lets us express this external influence. However, if we don’t have a do operator
there remains another option. We propose representing an intervention with a
variable, so that we are no longer intervening in the system from outside. For
example do[C = true] might be represented by A such that p(C = true | A =
true) = 1 and p(C | A = false) = p(C):

A C R

We can now represent that p(R = true | C = true,A = true) = p(R = true) ̸=
p(R = true | C = true,A = false) = 1. This expands the system to include an
action by a specific actor, rather than accounting for interventions originating
outside the system (as the do operator does).
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3.2 Emergent representation of interventions

This does not entirely resolve our problem. Even if intervention is represented
as a variable, that variable must still be explicitly defined before accurate induc-
tion can take place. It is an abstract notion which is presupposed. Variables are
undefined in the context of definitions 1, 2 and 3 for this very reason. Variables
tend to be very abstract (for example, “number of chickens” may presuppose
both a concept of chicken and a decimal numeral system), and the purpose (ac-
cording to [7] and [19]) of the formalism is to construct such abstractions via
induction. It does so using by formally defining reality (environment and cogni-
tion within that) using as few assumptions as possible [1], in order to address
symbol grounding [8] and other problems associated with dualism. In this con-
text, cause and effect are statements as defined in 2. Returning to the example
of Larry, instead of variables A,C and R we have a vocabulary v, and c, r ∈ Lv

which have a truth value in accordance with definition 2:

c ↔ “Larry put on a raincoat" and r ↔ “It rained"

As before, assume we have concluded p(r | c) = 1 from passive observation, the
naive interpretation of which is that we can make it rain by forcing Larry to
wear a coat. However, the statement associated with this intervention is not just
c = “Larry put on a raincoat" but a third a ∈ L such that:

a ↔ “Larry put on a raincoat because we forced him to"

a c r

Because we’re now dealing with statements, and because statements are sets of
declarative programs which are inferred rather than given, we no longer need
to explicitly define interventions in advance. Statements in an implementable
language represent sensorimotor activity, and are formed via induction [7, 1]. The
observation of c is part of the sensorimotor activity a, meaning c ⊆ a (if Larry is
not wearing his raincoat, then it also cannot be true that we are forcing him to
wear it). There is still no do operator, however i = a− c may be understood as
representing the identity of the party undertaking the intervention. If i ̸= ∅ then
it is at least possible to distinguish intervention from passive observation, in the
event that a and c are relevant (we still need explain under what circumstances
this is true). Whether intervention and observation are indistinguishable depends
upon the vocabulary V , the choice of which determines if i = ∅, or i ̸= ∅ (the
latter meaning that it is distinguishable). Thus interventions are represented,
but only to the extent that the vocabulary permits.

Definition 9 (intervention). If a is an intervention to force c, then c ⊆ a.
Intervention is distinguishable from observation only where c ⊂ a.

3.3 When will induction distinguish intervention from observation?

From (prem. 1) we have that choosing the weakest model maximises the prob-
ability of generalisation. There are many combinations of parent and child task
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for which generalisation from child to parent is only possible by selecting a model
that correctly distinguishes the effects of intervention from passive observation
(a trivial example might be a task informally defined as “predict the effect of this
intervention”). It follows that to maximise the probability of generalisation in
those circumstances the weakest model must distinguish between an intervention
a and what it forces, c, so long as (prem. 2) is satisfied as in def. 9, s.t. a ̸= c.

4 Awareness

We have described how an intervention a is represented as distinct from that
which it forces, c. Induction will form models representing this distinction in
tasks for which this aids completion. Now we go a step further. Earlier we dis-
cussed i = a− c as the identity of the party undertaking an intervention a. We
might define a weaker identity as k ⊂ i, which is subset of any number of differ-
ent interventions undertaken by a particular party. The do operator assumes the
party undertaking interventions is given, and so we might think of k above as
meaning “me”. However, there is no reason to restrict emergent representations
of intervention only to one’s self. For example there may exist Harvey, who also
intervenes to force c. It follows we may have v such that c ⊂ v, and v represents
our observation of Harvey’s intervention.

a

v

c r

If k ⊆ a − c can represent our identity as party undertaking interventions, it
follows that j ⊆ v−c may represent Harvey’s. Both identities are to some extent
context specific (another intervention may produce something other than j, or a
subset of j, for Harvey), but these emergent identities still exist as a measurable
quantity independent of the interventions with which they’re associated.

Definition 10 (identity). If a is an intervention to force c, then k ⊆ a − c
may function as an identity undertaking the intervention if k ̸= ∅.

One’s own identity is used to distinguish interventions from passive experiences
to facilitate accurate inductive inference in an interactive setting. It follows from
(prem. 1) that every object that has an impact upon one’s ability to complete
tasks must also have an identity5, because failing to account for the interventions
of these objects would result in worse performance.

4.1 Intent

The formalism we are discussing originated as a mechanistic explanation of the-
ory of mind called “The Mirror Symbol Hypothesis” [19], and of meaning in
5 Assuming interventions are distinguishable.
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virtue of intent [7] (similar to Grice’s foundational theory of meaning [20]). A
statement is a set of declarative programs, and can be used as a goal constraint
as is common in AI planning problems [21]. In the context of a task a model
expresses such a goal constraint, albeit integrated with how that goal is to be
satisfied [7, 1]. If one is presented with several statements representing decisions,
and the situations in which they were made (a task according to definition 3),
then the weakest statement with which which one can derive the decisions from
the situations (a model) is arguably the intent those decisions served [7]. Thus,
if identity k experiences interventions undertaken by identity j, then k can infer
something of the intent of j by constructing a task definition and computing the
weakest models [7]. This is a mechanistic explanation of how it is possible that
one party may infer another’s intent. Assuming induction takes place according
to definition 8, then it is also necessary to the extent that k affect’s j’s ability
to complete tasks. Otherwise, j’s models would not account for j’s interventions
and so performance would be negatively impacted. However, a few interventions
is not really much information to go on. Humans can construct elaborate ratio-
nales for behaviour given very little information, which suggests there is more
to the puzzle. The Mirror Symbol Hypothesis argues that we fill in the gaps by
projecting our own emergent symbols (either tasks or models, in this context)
representing overall, long term goals and understanding onto others in order to
construct a rationale for their immediate behaviour [7], in order to empathise.

4.2 How might we represent The Mirror Symbol Hypothesis?

Assume there exists a task Ω which describes every decision k might ever make
which meets some threshold of “good enough” [19, 7] at a given point in time.

Definition 11 (higher and lower level statements). A statement c ∈ L is
higher level than a ∈ L if Za ⊂ Zc, which is written as a ⊏ c6.

A model mΩ ∈ MΩ is k’s “highest level” intent or goal (given the threshold),
meaning ZΩ = DΩ . Using mΩ and k’s observation of decision d made in situation
s by j (the observation of which would also be a decision), k could construct
a lower level model mω ⊏ mΩ such that d ∈ Zs ∩ Zmω

. In other words, mω

is a rationale constructed by k to explain j’s intervention. Related work ex-
plores this in more depth [7, 19] . For our purposes it suffices to point out that
in combining emergent causality, identity, The Mirror Symbol Hypothesis [19]
and symbol emergence [7], we have a mechanistic explanation of the ability to
reason about one’s own identity and intent, and that of others, in terms of in-
terventions. Likewise the ability to predict how one’s own intent is modelled by
another is also of value in predicting that other’s behaviour. In tasks of the sort
encountered by living organisms, optimal performance would necessitate identity
k constructing a model of j’s model of k, and j′s model of k′s model of j and
so on to the greatest extent permitted by v (which represents the finite memory
6 Extension creates a lattice of statements, where the weakest statements represent

the highest level of abstraction, and the strongest the lowest.
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and other computational resources limiting one’s ability to represent predictions
of predictions of predictions ad infinitum).

4.3 Consciousness

We have described a means by which an agent may be aware of itself, of others, of
the intent of others and of the ability of others to model its own intent. By aware,
we mean it has access to and will function according to this information (access
and functional consciousness, contextualising everything in terms of identities
and their intent). Boltuc argues that phenomenal consciousness (characterised
as first person functional consciousness) is explained by today’s machine learning
systems [10]. We would suggest his argument extends to our formalism, and in
any case if qualia are a mechanistic phenomenon then they are already repre-
sented by the vocabulary of the implementable language. What is novel in our
formalism is not just that it points out that causal inference may construct iden-
tity and awareness, but that it does so with a formulation that also addresses
enactive cognition, symbol emergence and empathy [19, 7].

Anthropomorphism: An implementation of what we have described would
construct an identity for anything and everything affecting its ability to complete
tasks - even inanimate objects like tools, or features of the environment. Intent
would be ascribed to those identities, to account for the effect those objects have
upon one’s ability to satisfy goals. Though this might seem a flaw, to do anything
else would negatively affect performance. Interestingly, this is consistent with
the human tendency [22] to anthropomorphise. We ascribe agency and intent to
inanimate objects such as tools, the sea, mountains, the sun, large populations
that share little in common, things that go bump in the night and so forth.

Fragmented identities: It is also interesting to consider what this says of
systems which are less than optimal (do not identify the weakest hypothesis), or
which do not use a vocabulary which permits the construction of one identity
shared by all of the interventions it undertakes. Such a system might construct
multiple unconnected identities for itself, and ascribe different intentions to each
one. Likewise if for the same reasons the model constructs multiple identities for
what is in fact the same object, it might seem to hallucinate and hold contra-
dictory beliefs about that object.
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