
 Make E Smart Again

Zarathustra Goertzel

Czech Technical University in Prague

IJCAR 2020

*Supported by the ERC Consolidator grant no. 649043 AI4REASON and by the
Czech project AI&Reasoning CZ.02.1.01/0.0/0.0/15 003/ 0000466 and the European Regional

Development Fund.

2

E Prover (a Saturation-based ATP)

● Goal: Prove conjecture from premises.
● E has two sets of clauses:

● Processed clauses P (initially empty)
● Unprocessed clauses U (Negated Conjecture and Premises)

● Given Clause Loop:
● Select ‘given clause’ g to add to P
● Apply inference rules to g and all clauses in P
● Process new clauses. Add non-trivial and non-redundant ones to U.

● Proof search succeeds when empty clause is inferred.
● Proof consists of some of the given clauses.

3

Given Clause Loop in E

Image thanks to Stephan Schulz’s presentation on E

4

 E Strategies

A strategy guides E’s proof search.

The main components:
● Clause Evaluation Functions
● Term ordering
● Literal selection

5

 E Strategies

● Clause Evaluation Functions consist of:
● Priority functions: partition clauses into priority queues.

● e.g., ConstPrio, PreferUnit

● Weight functions: order clauses in queues based on a score.
● e.g.: Clauseweight, FIFOWeight

● Weighted by frequency of use, for example, :

 -H’(5*Clauseweight(ConstPrio,1,1,1),
1*FIFOWeight(ConstPrio))’

6

 Strategy E1

--definitional-cnf=24 --split-aggressive --simul-paramod
--forward-context-sr --destructive-er-aggressive --

destructive-er --prefer-initial-clauses -tKBO -
winvfreqrank -c1 -Ginvfreq -F1 --delete-bad-

limit=150000000 -WSelectMaxLComplexAvoidPosPred -
H(1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.1,5,0,0
.1,1,4),1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.5,
100,0,0.2,0.2,4),1*Refinedweight(PreferWatchlist,4,300,
4,4,0.7),1*RelevanceLevelWeight2(PreferProcessed,0,1,
2,1,1,1,200,200,2.5,9999.9,9999.9),1*StaggeredWeight(

DeferSOS,1),1*SymbolTypeweight(DeferSOS,18,7,-
2,5,9999.9,2,1.5),2*Clauseweight(PreferWatchlist,20,99
99,4),2*ConjectureSymbolWeight(DeferSOS,9999,20,50,-

1,50,3,3,0.5),2*StaggeredWeight(DeferSOS,2))

7

 Strategy E2

--definitional-cnf=24 --split-aggressive --split-
reuse-defs --simul-paramod --forward-context-sr

--destructive-er-aggressive --destructive-er --
prefer-initial-clauses -tKBO -winvfreqrank -c1 -

Ginvfreq -F1 --delete-bad-limit=150000000 -
WSelectMaxLComplexAvoidPosPred -

H(3*ConjectureRelativeSymbolWeight(PreferUnit
GroundGoals,0.1,100,100,50,100,0.3,1.5,1.5),4*F
IFOWeight(PreferNonGoals),5*RelevanceLevelWe

ight2(ConstPrio,1,0,2,1,50,-2,-2,100,0.2,3,4))

8

 E Strategies

● Term orderings:
● Determine rewrite order
● Contribute to completeness of proof search
● Prevent cycles

9

 E Strategies

● Term orderings:
● Determine rewrite order
● Contribute to completeness of proof search
● Prevent cycles

● For example, given x+0=0,
● x+0 → x is valid
● x → x+0 is invalid

10

 E Strategies

● Term orderings:
● Determine rewrite order
● Contribute to completeness of proof search
● Prevent cycles

● For example, given x+0=0,
● x+0 → x is valid
● x → x+0 is invalid

● Our strategies use KBO: Kunth-Bendix ordering

11

 E Strategies

● Literal selection limits resolution.
● Limits redundancy
● Contributes to completeness.

● For example,
a v b v C ~a ~b

b v C ~b

C

a v C ~a

12

 ENIGMA

● Statistical Learning
● XGBoost

● Learns from given-clauses
● Positive and Negative
● Maps clauses to vectors
● Weight function
● Ranks all clauses

● Input:
● Positive examples +

conjecture features
● Negative examples +

conjecture features

● Output:
● Fast model to predict whether

(clause, conjecture) pairs are
positive or negative.

13

Clauses Vectors
● Treat clauses as trees. Abstract vars

and skolem symbols

For example:

● Enumerate features:
Count features in a clause
for its vector

14

 XGBoost Example Tree

15

 Dataset

● Mizar Mathematical Library (MML) contains 1148 articles and
57880 theorems:

● including Bolzano-Weierstrass and Gödel's completeness theorem

● An interactive theorem proving system

● Premises are already selected.

16

Previous ENIGMA results:

On all 57880 Mizar problems:

● E1: 14526
● E2: 12778
● ENIGMA: 25562 (+76%)

17

 Research Question

● Can ENIGMA learn to guide E without its
strategies?

Method:

1) Make E stupid.

2) Try to learn!

18

 Making E Stupid: E0

1) Replace KBO with structural identity relation
● (Which disables term rewriting!)

2) Disable literal selection

3) Use only the basic strategy:

--definitional-cnf=24 --prefer-initial-clauses
 -tIDEN –restrict-literal-comparisons

 -H’(5*Clauseweight(ConstPrio,1,1,1),
1*FIFOWeight(ConstPrio))’

19

 ENIGMA Training

1) Run E0

2) Train a model.

3) Run E0 with the model (loop 0).

4) Repeat.

Hyper-parameters:
● Number of loops
● Number of trees per loop
● Depth of trees

20

 Results

21

 Results

22

 Results

23

Results

24

 Conclusion

● Can ENIGMA learn to guide E without its strategies?
● Yes!
● 256% increase w/ additional training data.
● 156% increase trained on E0 data alone.

● Term ordering and literal selection are still helpful.

● Can the gap be bridged?
● Perhaps by ENIGMA-NG..

● Will relaxing term ordering help combine strategies?

25

References

● Stephan Schulz’ slides on E with good graphics:
http://aitp-conference.org/2016/slides/StSGuida
nce.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

