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E Prover (a Saturation-based ATP)

● Goal: Prove conjecture from premises.
● E has two sets of clauses:

● Processed clauses P (initially empty)
● Unprocessed clauses U (Negated Conjecture and Premises)

● Given Clause Loop:
● Select ‘given clause’ g to add to P 
● Apply inference rules to g and all clauses in P
● Process new clauses. Add non-trivial and non-redundant ones to U.

● Proof search succeeds when empty clause is inferred.
● Proof consists of some of the given clauses.
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Given Clause Loop in E

Image thanks to Stephan Schulz’s presentation on E
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                     E Strategies

A strategy guides E’s proof search.

The main components:
● Clause Evaluation Functions
● Term ordering
● Literal selection
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  E Strategies

● Clause Evaluation Functions consist of:
● Priority functions: partition clauses into priority queues.

● e.g., ConstPrio, PreferUnit

● Weight functions: order clauses in queues based on a score.
● e.g.: Clauseweight, FIFOWeight

●  Weighted by frequency of use, for example, :

 -H’(5*Clauseweight(ConstPrio,1,1,1),
1*FIFOWeight(ConstPrio))’
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  Strategy E1

--definitional-cnf=24 --split-aggressive   --simul-paramod 
--forward-context-sr --destructive-er-aggressive --

destructive-er --prefer-initial-clauses -tKBO -
winvfreqrank -c1 -Ginvfreq -F1 --delete-bad-

limit=150000000 -WSelectMaxLComplexAvoidPosPred  -
H(1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.1,5,0,0
.1,1,4),1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.5,
100,0,0.2,0.2,4),1*Refinedweight(PreferWatchlist,4,300,
4,4,0.7),1*RelevanceLevelWeight2(PreferProcessed,0,1,
2,1,1,1,200,200,2.5,9999.9,9999.9),1*StaggeredWeight(

DeferSOS,1),1*SymbolTypeweight(DeferSOS,18,7,-
2,5,9999.9,2,1.5),2*Clauseweight(PreferWatchlist,20,99
99,4),2*ConjectureSymbolWeight(DeferSOS,9999,20,50,-

1,50,3,3,0.5),2*StaggeredWeight(DeferSOS,2))
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  Strategy E2

--definitional-cnf=24 --split-aggressive  --split-
reuse-defs --simul-paramod --forward-context-sr 

--destructive-er-aggressive --destructive-er --
prefer-initial-clauses -tKBO -winvfreqrank -c1 -

Ginvfreq -F1 --delete-bad-limit=150000000 -
WSelectMaxLComplexAvoidPosPred  -

H(3*ConjectureRelativeSymbolWeight(PreferUnit
GroundGoals,0.1,100,100,50,100,0.3,1.5,1.5),4*F
IFOWeight(PreferNonGoals),5*RelevanceLevelWe

ight2(ConstPrio,1,0,2,1,50,-2,-2,100,0.2,3,4))
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  E Strategies

● Term orderings:
● Determine rewrite order
● Contribute to completeness of proof search
● Prevent cycles
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  E Strategies

● Term orderings:
● Determine rewrite order
● Contribute to completeness of proof search
● Prevent cycles

● For example, given x+0=0, 
● x+0 → x is valid
● x → x+0 is invalid
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  E Strategies

● Term orderings:
● Determine rewrite order
● Contribute to completeness of proof search
● Prevent cycles

● For example, given x+0=0, 
● x+0 → x is valid
● x → x+0 is invalid

● Our strategies use KBO: Kunth-Bendix ordering
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  E Strategies

● Literal selection limits resolution.
● Limits redundancy
● Contributes to completeness.

● For example,
a v b v C    ~a    ~b

b v C     ~b

C

a v C     ~a
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  ENIGMA

● Statistical Learning
● XGBoost

● Learns from given-clauses
● Positive and Negative
● Maps clauses to vectors
● Weight function
● Ranks all clauses

● Input: 
● Positive examples + 

conjecture features
● Negative examples + 

conjecture features

● Output:
● Fast model to predict whether 

(clause, conjecture) pairs are 
positive or negative.
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Clauses  Vectors
● Treat clauses as trees. Abstract vars 

and skolem symbols

For example:

● Enumerate features:
Count features in a clause 
for its vector
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              XGBoost Example Tree
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 Dataset

● Mizar Mathematical Library (MML) contains 1148 articles and 
57880 theorems:

● including Bolzano-Weierstrass and Gödel's completeness theorem

● An interactive theorem proving system

● Premises are already selected.
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Previous ENIGMA results:

On all 57880 Mizar problems:

● E1:            14526
● E2:            12778
● ENIGMA:    25562 (+76%)



17

                   Research Question

● Can ENIGMA learn to guide E without its 
strategies?

Method: 

1) Make E stupid.

2) Try to learn!
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                Making E Stupid: E0

1) Replace KBO with structural identity relation
●  (Which disables term rewriting!)

2) Disable literal selection

3) Use only the basic strategy:

--definitional-cnf=24 --prefer-initial-clauses 
   -tIDEN –restrict-literal-comparisons 

     -H’(5*Clauseweight(ConstPrio,1,1,1),
1*FIFOWeight(ConstPrio))’
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 ENIGMA Training

1) Run E0 

2) Train a model.

3) Run E0 with the model (loop 0).

4) Repeat.

Hyper-parameters:
● Number of loops
● Number of trees per loop
● Depth of trees
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                          Results
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                          Results
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      Results
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Results
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                     Conclusion

● Can ENIGMA learn to guide E without its strategies?
● Yes!
● 256% increase w/ additional training data.
● 156% increase trained on E0 data alone.

● Term ordering and literal selection are still helpful.

● Can the gap be bridged? 
● Perhaps by ENIGMA-NG..

● Will relaxing term ordering help combine strategies?
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References

● Stephan Schulz’ slides on E with good graphics: 
http://aitp-conference.org/2016/slides/StSGuida
nce.pdf 
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