ProofWatch++: Watchlist Guidance for E prover (and some Machine Learning)

Zarathustra Goertzel Jan Jakubův Josef Urban Stephan Schulz

Czech Technical University in Prague

DHBW Stuttgart

ITP'18 and BUMERANC'18 24+b Sector ProofWatch++: Watchlist Guidance for E prover (and some Machine 1/60

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

Learning From Mizar Proofs

We work with

Mizar Mathematical Library

theorem :: WAYBEL 1:85
for H being non empty lower-bounded RelStr st H is Heyting holds
for a, b being Element of H holds 'not' (a "/\" b) >= ('not' a) "\/" ('not' b)

theorem Th36: :: YELLOW 5:36
for L being non empty Boolean RelStr
for a, b being Element of L holds
('not' (a "\/" b) = ('not' a) "/\" ('not' b) & 'not' (a "/\" b) = ('not' a) "\/" ('not' b))

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine L

イロト イポト イヨト イヨト

Learning From Mizar Proofs: WAYBEL_1 85

theorem :: WAYBEL 1:85 for H being non empty lower-bounded RelStr st H is Heyting holds for a, b being Element of H holds 'not' (a "/\" b) >= ('not' a) "\/" ('not' b) **let** H be non empty lower-bounded RelStr : :: thesis: assume A1: H is Heyting ; :: thesis: then A2: Bottom H <= Bottom H by ORDERS 2:1; let a, b be Element of H; :: thesis: A3: 'not' a <= 'not' a by A1, ORDERS 2:1: A4: 'not' b <= 'not' b by A1, ORDERS 2:1; (a "/\" b) "/\" (('not' a) "\/" ('not' b)) = ((a "/\" b) "/\" ('not' a)) "\/" ((a "/\" b) "/\" ('not' b)) by A1, Def3 .= ((b "/\" a) "/\" ('not' a)) "\/" ((a "/\" b) "/\" ('not' b)) by A1, LATTICE3:15 .= (b "/\" (a "/\" ('not' a))) "\/" ((a "/\" b) "/\" ('not' b)) by A1, LATTICE3:16 = (b "/\" (a "/\" ('not' a))) "\/" (a "/\" (b "/\" ('not' b))) by A1, LATTICE3:16 .= (b "/\" (Bottom H)) "\/" (a "/\" (b "/\" ('not' b))) by A1, A3, Th82 .= (b "/\" (Bottom H)) "\/" (a "/\" (Bottom H)) by A1, A4, Th82 .= ((Bottom H) "/\" b) "\/" (a "/\" (Bottom H)) by A1, LATTICE3:15 .= ((Bottom H) "/\" b) "\/" ((Bottom H) "/\" a) by A1, LATTICE3:15 = (Bottom H) "\/" ((Bottom H) "/\" a) by A1, Th3 .= (Bottom H) "\/" (Bottom H) by A1, Th3 .= Bottom H by A1, A2, YELLOW 0:24 ; hence 'not' (a "/\" b) >= ('not' a) "\/" ('not' b) by A1, Th82; :: thesis:

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine L

Introduction

Theory Experimental Setup Results Examples ENIGMA: Machine Learning

Learning From Mizar Proofs: YELLOW_5 36

```
let L be non empty Boolean RelStr ; :: thesis:
  let a. b be Element of L: :: thesis:
AI: (a "\/" b) "/\" (('not' a) "/\" ('not' b)) = ((a "\/" b) "/\" ('not' a)) "/\"
('not' b) by LATTICE3:16
  .= ((('not' a) "//" a) "//" (('not' a) "//" b)) "//" ('not' b) by WAYBEL 1:def 3
.= ((Bottom L) "//" (('not' a) "//" b)) "//" ('not' b) by Th34
  .= (('not' a) "/\" b) "/\" ('not' b) by WAYBEL 1:3
  .= ('not' a) "/\" (b "/\" ('not' b)) by LATTICE3:16
.= ('not' a) "/\" (Bottom L) by Th34
   .= Bottom L by WAYBEL 1:3 ;
  (a "\/" b) "\/" (('not' a) "/\" ('not' b)) = a "\/" (b "\/" (('not' a) "/\"
('not' b))) by LATTICE3:14
  .= a "\/" ((b "\/" ('not' a)) "/\" (b "\/" ('not' b))) by Third
  a "\/" ((b "\/" ('not' a)) "/\" (Top L)) by Th34
.= a "\/" (b "\/" ('not' a)) by WAYBEL 1:4
  .= (a "\/" ('not' a)) "\/" b by LATTICE3:14
   = (Top L) "\/" b by Th34
.= Top L by WAYBEL 1:4 ;
  then ('not' a) "/\" ('not' b) is a complement of a "\/" b by Al, WAYBEL_1:def 23;
hence 'not' (a "\/" b) = ('not' a) "/\" ('not' b) by Th11; :: thesis:
  A2: (a "/\" b) "/" (('not' a) "\/" ('not' b)) = a "/\" (b "/\" (('not' a) "\/"
  ('not' b))) by LATTICE3:16
.= a "//" ((b "//" ('not' a)) "//" (b "//" ('not' b))) by WAYBEL 1:def 3
   = a "/\" ((b "/\" ('not' a)) "\/" (Bottom L)) by Th34
  .= a "/\" (b "/\" ('not' a)) by WAYBEL 1:3
= (a "/\" ('not' a)) "/\" b by LATTICE3:16
  = (Bottom L) "/\" b by Th34
  .= Bottom L by WAYBEL 1:3 ;
  (a "/\" b) "\/" (('not' a) "\/" ('not' b)) = ((a "/\" b) "\/" ('not' a)) "\/"
  ('not' b) by LATTICE3:14
of.= ((('not' a) "\/" a) "/\" (('not' a) "\/" b)) "\/" ('not' b) by Thi?
  .= ((Top L) "/\" (('not' a) "\/" b)) "\/" ('not' b) by Th34
  .= (('not' a) "\/" b) "\/" ('not' b) by WAYBEL 1:4
.= ('not' a) "\/" (b "\/" ('not' b)) by LATTICE3:14
  .= ('not' a) "\/" (Top L) by Th34
  .= Top L by WAYBEL 1:4 ;
  then ('not' a) "\/" ('not' b) is_a_complement_of a "/\" b by A2, WAYBEL_1:def 23;
  hence 'not' (a "//" b) = ('not' a) "\/" ('not' b) by Thil; :: thesis:
                                                              • • • • • • • • • • • • •
```

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine L

Learning From Mizar Proofs

We work with

- Mizar Mathematical Library
- E prover
 - can be a hammer for theorem proving (ITP)
 - uses first order formula (fof) form of Mizar:

```
% Mizar problem: t85_waybel_1,waybel_1,3140,5
fof(t85_waybel_1, conjecture, (! [A] : ( ( ~ (v2_struct_0(A)) & (v1_yellow_0(A) & l1_orders_2
(A)) ) => (v9_waybel_1(A) => (! [B] : (m1_subset 1(B, u1_struct_0(A)) => (! [C] : (m1_subse
t_1(C, u1_struct_0(A)) => r1_orders_2(A, k10_lattice3(A, k7_waybel_1(A, B), k7_waybel_1(A, C)), k
7_waybel_1(A, k11_lattice3(A, B, C))) ) ) ) ) ) ) ) ) ).
fof(antisymmetry_r2_hidden, axiom, (! [A, B] : (r2_hidden(A, B) => ~ (r2_hidden(B, A)) ) ) ).
fof(cc10_struct_0, axiom, (! [A] : (l1_struct_0(A) => ( ( ~ (v2_struct_0(A)) & v7_struct_0(A)
) => v13_struct_0(A, 1)) ) ).
```

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine L 5/60

< ロ > < 同 > < 回 > < 回 > < 回 > <

Learning From Mizar Proofs

We work with

- Mizar Mathematical Library
- E prover
 - can be a hammer for theorem proving (ITP)
 - uses first order formula (FOF) form of Mizar
 - learns from E proof clauses in conjunctive normal form:

ProofWatch++: Watchlist Guidance for E prover (and some Machine I 6/60

イロト イポト イヨト イヨト

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch: Results Overview

To prove YELLOW_5 Theorem 36, E considers

- 6550 given clauses without learning from proofs
- 5218 given clauses with learning from proofs (such as WAYBEL_1 85)

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine I

伺下 イヨト イヨト

ProofWatch: Results Overview

On our benchmarks of 57987 Mizar theorems, E proves

- 21670 (37.3%) conjectures without learning from proofs
- 23192 (39.9%) conjectures with learning from proofs This is a 7% improvement (and there are obviously improvements to try).

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch: Results Overview

 ProofWatch provides a proof-state vector that characterizes the conjecture's mathematical context.

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine L 9/60

ProofWatch: Watchlist History

- Clauses from related (E) proofs are put on the **Watchlist**.
 - E feature implemented by Stephan Schulz.
 - E checks if each clause it considers matches a watchlist clause.

```
cnf(c_0_63,plain, (v2_struct_0(X1)|v1_lattice3(X1)-l1_orders_2(X1)|-v9_waybel_1(X1))),# trainpos
cnf(c_0_52,plain, (v2_struct_0(X1)|v5_orders_2(X1)|-l1_orders_2(X1)|-v9_waybel_1(X1))),# trainpos
cnf(c_0_136,plain, (v2_struct_0(X1)|r1_orders_2(X1,X3,K7_waybel_1(X1,X2))|k11_lattice3(X1,X2,X3)
_!=k3_yellow_0(X1)|-v1_yellow_0(X1)|-l1_orders_2(X1,X1_vaybel_1(X1,X2))|k11_lattice3(X1,X2,X3)
_=n1_subset_1(X3,u1_struct_0(X1))|-m1_subset_1(X2,u1_struct_0(X1)))),# trainpos
cnf(c_0_139,negated_conjecture, (m1_subset_1(k11_lattice3(esk1_0,esk2_0,esk2_0),u1_struct_0(esk1_0)))).# trainpos
```

ProofWatch++: Watchlist Guidance for E prover (and some Machine I 10/60

周 ト イ ヨ ト イ ヨ ト

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch: Watchlist History

- E proof clauses are put on the Watchlist.
 - E feature implemented by Stephan Schulz.
 - E checks if each clause it considers matches a watchlist clause.
- Hint lists (Veroff 96)
 - provide a similar feature in Prover9 and Otter
 - used for proving extensions of AIM (Abelian Inner Mapping) conjecture in loop theory by Bob Veroff
 - have obtained very long proofs (1000+ steps)

ProofWatch: Watchlist Usage

What goes on the watchlist?

- Related or similar proofs' clauses
- Proof sketches
- Conjectured lemmas/sub-goals
- Generally useful clauses or "mathematical tricks"

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine I 12/60

ProofWatch: Watchlist Usage

- Matching clauses (subsumption) is symbolic Al.
- Matching with proof completion is statistical AI.
- The vectorial *proofstate* characterization can work with standard ML methods.
- Watchlist provides logical interface between AI, human, or ITP context and the ATP:

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine 13/60

ProofWatch: Experiments

We do the first benchmark of E's Watchlist. Specifically:

- how to include the watchlist in E strategies?
- how to build the watchlist?
- matching watchlist clauses modulo skolem names (e.g., esk(A, B) ⊑ eskfoobar(A, B))
- dynamic weighting of hints by proof completion (aka 'relevance')
- k-NN recommendation of prior proofs based on conjecture features

イロト イポト イヨト イヨト

- E's a saturation-based refutational theorem prover (using superposition calculus)
- To prove P, E attempts to prove $\{\neg P \cup \text{Premises}\} \rightarrow \bot$

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

イロト イポト イヨト イヨト

E Basics: Given Clause Loop

- E has two sets of clauses:
 - Processed clauses
 - Unprocessed clauses
- E's modus operandi is the given clause loop:

```
while (no proof found)
{
   select a given clauses
   apply inference rules to selected clauses
   process inferred clauses
}
```

Motivation

Basic Watchlist Mechanism: Given Clause Selection

- watchlist: list of clauses, hints.
- Check if each clause subsumes a hint (clause ⊑ hint)
- If yes, boost clause priority (and thus score), making selection more likely.

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine 18/60

Basic Watchlist Mechanism: Clause Evaluation Functions

- E chooses given clauses by weighted round-robbin selection of clause evaluation functions (CEFs),
- Clause evaluation functions
 - partition clauses into queues based on priority
 - order queues based on clause weight

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

Basic Watchlist Mechanism: Clause Evaluation Functions

An example E strategy:

-tKBO -H(2*Clauseweight(PreferWatchlist,20,9999,4) ,4*FIFOWeight(PreferUnit))

Where

- Priority functions: PreferWatchlist, PreferUnit
- Weight functions: Clauseweight, FIFOWeight

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine 20/60

Baseline 02: An Actual Evolved Strategy File

- --definitional-cnf=24 --split-aggressive --simul-par
- amod --forward-context-sr --destructive-er-aggressive
- --destructive-er --prefer-initial-clauses -tKBO -winv
- freqrank -c1 -Ginvfreq -F1 --delete-bad-limit=150000000
- -WSelectMaxLComplexAvoidPosPred
- -H(1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.1,5,0,0.1,1,1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.5,100,0,0.2,0)
- ,1*Refinedweight(PreferWatchlist,4,300,4,4,0.7)
- ,1*RelevanceLevelWeight2(PreferProcessed,0,1,2,1,1,1,200,20
- ,1*StaggeredWeight(DeferSOS,1)
- ,1*SymbolTypeweight(DeferSOS,18,7,-2,5,9999.9,2,1.5)
- ,2*Clauseweight(PreferWatchlist,20,9999,4)
- ,2*ConjectureSymbolWeight(DeferSOS,9999,20,50,-1,50,3,3,0,4

 ProofWatch++:
 Watchlist Guidance for E prover (and some Machine I

 Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan
 21/60

Dynamic Watchlist Mechanism

- Multiple watchlists: one for each loaded proof.
- Keep track of which proofs hints come from.
- Count what % of each proof has been covered (subsumed)
- Assign more priority for higher completion %.
 - -> closer to contradiction
 - \bullet -> closer to current proof
- Can represent proof state.
- The **PreferWatchlistRelevant** priority function.

・ 同 ト ・ 三 ト ・ 三 ト

Dynamic Watchlist Mechanism: Relevance Inheriting

Probably a good idea to keep following a good hint:

• Inherit watchlist priority from parents

Priority queues are absolute, so

- Decrease inheritance each generation with multiplicative decay.
- Drop to zero below a threshold

Dynamic Watchlist Mechanism: Relevance Calculation

For a clause C matching at least one watchlist W_i :

$$relevance_0(C) = \max_{W \in \{W_i: C \sqsubseteq W_i\}} \left(\frac{progress(W)}{|W|} \right)$$

Where progress(W) is how many clauses in watchlist W have been subsumed.

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine 24/60

Dynamic Watchlist Mechanism: Inheritance Calculation

With decay, for $\delta < 1$,

$$\mathsf{relevance}_1(\mathcal{C}) = \mathsf{relevance}_0(\mathcal{C}) + \delta * \underset{D \in \mathsf{parents}(\mathcal{C})}{\operatorname{avg}} \left(\mathsf{relevance}_1(\mathcal{D}) \right)$$

Aditionally, reset to 0 if $relevance_1(C) < \alpha$ and $\frac{relevance_1(C)}{length(C)} < \beta$ for threshold parameters $\alpha, \beta > 0$.

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine 25/60

Baseline Strategies

- We use 57897 Mizar40 conjectures with premises pre-selected.
- We previously evolved 32 strategies with a coverage of 24702 proofs (in 5s each).
- We use a top 5 greedy cover of strategies: Strategies A-E.
 In 10s they together solve 21670 problems.
 In 5 s they together solve 21122 problems.

Using the Watchlist

E native option:

• Stephan Schulz's -xUseWatchlistEvo (evo)

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine L

4 3 5 4 3 5

Using the Watchlist

E native option:

• Stephan Schulz's -xUseWatchlistEvo (evo)

Some options (modifying baseline strategies):

- All priority functions -> PreferWatchlist (pref)
- Always PreferWatchlist, default to other priority function if not on watchilst (*uwl*).
- Match Skolems by name and arity only (on top of *pref*) (*ska*).
- Priority functions -> **PreferWatchlistRelevant** (*dyn*).
- Add relevance inheritance to dyn (dyndec).

Using the Watchlist

E native option:

• Stephan Schulz's -**xUseWatchlistEvo** (*evo*) Some options (modifying baseline strategies):

- All priority functions -> PreferWatchlist (pref)
- Always PreferWatchlist, default to other priority function if not on watchilst (*uwl*).
- Match Skolems by name and arity only (on top of *pref*) (*ska*).
- Priority functions -> **PreferWatchlistRelevant** (*dyn*).
- Add relevance inheritance to dyn (dyndec).

And for comparison:

• Priority functions -> **ConstPrio** (*const*)

Creating the Watchlist

- Use most frequent clause
- Use proof clauses from the conjecture's Mizar article (size 1-4000)
- Use k-NN to suggest clauses
- Use k-NN to suggest proofs

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine I 30/60

Informal/Preliminary Testing

- Clauses from proofs by same strategy seem more useful.
- Not removing matched hints helps with small watchlists.
- Defaultweight(PreferWatchlist) sucks: weight functions are good.

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine I 31/60

Small Most Frequent Clauses Test

Results of *prefA* run with **hints** taken from all articles.

Proved Clauses (out of 10000)

Small Most Frequent Clauses Test

Results of *prefA* run with **hints** taken from all articles.

Mizar-article Watchlist Benchmark

The strategies are run for 10s each on a random sample of 5000 conjectures.

34/60

5 Strategy Ensemble Coverage

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

Mizar-article Watchlist Benchmark

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

k-NN Dynamic Watchlist Round 1

k-NN Dynamic Watchlist Round 1

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

k-NN Dynamic Watchlist Round 2

k-NN Dynamic Inheritance Watchlist

Divergence from baseline

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

Grand Total Results

Top 5 Greedy Covers (by watchlist creation method)

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine L

41/60

Grand Total Results

total	knn-prefA_16	dyn2C_16	dyndecD_16	dynE_4	dyndecA_128
2007	1565	230	97	68	47
23192	18583	2553	1050	584	422
23192	18583	14486	14514	13532	15916

Table: Top: Cumulative sum of the 5000 test set greedy cover. Recall the baseline covered 1853 and *const* 1910. Bottom: Greedy cover run on the full dataset, cumulative and total proved. The top 5 baseline strategies covered 21657. Thus there's an improvement of 7%.

De Morgan's laws for Boolean lattices

theorem Th36: :: YELLOW 5:36
for L being non empty Boolean RelStr
for a, b being Element of L holds
('not' (a "\/" b) = ('not' a) "/\" ('not' b) & 'not' (a "/\" b) = ('not' a) "\/" ('not' b))

helped significantly by

```
theorem :: WAYBEL_1:85
for H being non empty lower-bounded RelStr st H is Heyting holds
for a, b being Element of H holds 'not' (a "/\" b) >= ('not' a) "\/" ('not' b)
```

Note the weaker assumptions on H: just lower bounded and Heyting. Yet, 62 (80.5%) of the 77 clauses from the proof of WAYBEL_1:85 are matched.

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine I 43/60

イロト イポト イヨト イヨト

De Morgan's laws for Boolean lattices - Statistics

- 32 related proofs results in 2220 clauses on the watchlists.
- The dynamically guided proof search takes 5218 (nontrivial) given clause loops
- The ATP proof is 436 inferences long
- 194 given clauses match the watchlist in the proof search
- 120 (61.8%) of them end up being part of the proof
- 27.5% of the proof steps guided by the watchlist
- The proof search without the watchlist takes 6550 nontrivial given clause loops (25.5% more)

イロト イポト イヨト イヨト

Final proof progress

0	0.438	42/96	1	0.727	56/77	2	0.865	45/52	3	0.360	9/25
4	0.750	51/68	5	0.259	7/27	6	0.805	62/77	7	0.302	73/242
8	0.652	15/23	9	0.286	8/28	10	0.259	7/27	11	0.338	24/71
12	0.680	17/25	13	0.509	27/53	14	0.357	10/28	15	0.568	25/44
16	0.703	52/74	17	0.029	8/272	18	0.379	33/87	19	0.424	14/33
20	0.471	16/34	21	0.323	20/62	22	0.333	7/21	23	0.520	26/50
24	0.524	22/42	25	0.523	45/86	26	0.462	6/13	27	0.370	20/54
28	0.411	30/73	29	0.364	20/55	30	0.571	16/28	31	0.357	10/28

Table: Final state of the proof progress for the (serially numbered) 32 proofs loaded to guide the proof of YELLOW_5:36. We show the computed ratio and the number of matched and all clauses.

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine L 45/60

ProofWatch Only Example

```
theorem :: BOOLEALG:68
for L being B Lattice
for X, Y being Element of L holds (X \+\ Y) ` = (X "/\" Y) "\/" ((X `) "/\" (Y `))
proof end;
```

using 272/285, 283/350, and 155/233 clauses from:

```
theorem Th33: :: BOOLEALG:33
for L being B_Lattice
for X, Y being Element of L holds X \ (X "/\" Y) = X \ Y
proof end;
```

```
theorem :: BOOLEALG:67
for L being B_Lattice
for X, Y, Z being Element of L holds (X \+\ Y) \+\ Z = X \+\ (Y \+\ Z)
proof end;
```

```
theorem Th23: :: LATTICES:23
for L being B_Lattice
for a, b being Element of L
ProofWatch++: Watchlist Guidance for E prover (and some Machine L
Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan
```

Proof Progress

#	watchlist	0:	0.714	(5	/	7)
#	watchlist	1:	0.500	(19	/	38)
#	watchlist	2:	0.649	(72	/	111)
#	watchlist	3:	0.945	(69	/	73)
#	watchlist	4:	0.618	(21	/	34)
#	watchlist	5:	0.954	(272	/	285)
#	watchlist	6:	0.565	(13	/	23)
#	watchlist	7:	0.765	(13	/	17)
#	watchlist	8:	0.484	(30	/	62)
#	watchlist	9:	0.639	(69	/	108)
#	watchlist	10:	0.809	(283	/	350)
#	watchlist	11:	0.460	(40	/	87)
#	watchlist	12:	0.667	(52	/	78)
#	watchlist	13:	0.765	(78	/	102)
#	watchlist	14:	0.833	(110	/	132)
#	watchlist	15:	0.665	(155	/	233) 💷 🗎
			ProofW	atch	1++: Watchlist	Gui	dance for E prover (and some N

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

lachine L

Conclusion (of ProofWatch talk)

- Upgraded E's watchlist to include dynamic proof-completion and relevance inheritance.
 - and to output a proof-state vector with contextual information.
- Benchmarked E's watchlist feature on Mizar Mathematical Library.
- Demonstrated k-NN proof recommendation as effective for watchlist creation.
 - in successive rounds
- ProofWatch obtains 7% improvement over strong non-watchlist E strategies.

Motivation: Use Machine Learning!

ENIGMA: Efficient learNing-based Inference Guiding MAchine

- Learn a linear model to *classify* clauses as **good** or **bad**.
- Train on proof-data:
 - C₁ : Feature_Vector # trainpos
 - C₂ : Feature_Vector # trainneg
 - . . .
- Turn ENIGMA prediction into weight function (as a CEF):
 - weight(C, M) = γ length(C) + predict-weight(C, M)
 - Predicted weighst are 1 (positive) or 10 (not positive)

ENIGMA: LIBLINEAR Support Vector Machine

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine I

ENIGMA: LIBLINEAR Support Vector Machine

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

Can we combine ProofWatch + ENIGMA?

- ProofWatch: logically-grounded given clause selection (with some ML)
- ENIGMA: Machine Learned model based given clause selection

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine 53/60

Can we combine ProofWatch + ENIGMA?

- ProofWatch: logically-grounded given clause selection (with some ML)
- ENIGMA: Machine Learned model based given clause selection
- Key: feed Proof Vectors to ENIGMA.
 - Represents current proof state wrt a set of proofs
 - Add this to ENIGMA features

Proof Progress

#	watchlist	0:	0.714	(5	/	7)			
#	watchlist	1:	0.500	(19	/	38)			
#	watchlist	2:	0.649	(72	/	111)			
#	watchlist	3:	0.945	(69	/	73)			
#	watchlist	4:	0.618	(21	/	34)			
#	watchlist	5:	0.954	(272	/	285)			
#	watchlist	6:	0.565	(13	/	23)			
#	watchlist	7:	0.765	(13	/	17)			
#	watchlist	8:	0.484	(30	/	62)			
#	watchlist	9:	0.639	(69	/	108)			
#	watchlist	10:	0.809	(283	/	350)			
#	watchlist	11:	0.460	(40	/	87)			
#	watchlist	12:	0.667	(52	/	78)			
#	watchlist	13:	0.765	(78	/	102)			
#	watchlist	14:	0.833	(110	/	132)			
#	watchlist	15:	0.665	(155	/	233)	≣►	æ	୬ବନ
			ProofVV	atch	i++: Watchlist	Gui	dance for E prover	and	some	iviachine L

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

55/60

First Test: MPTP Challenge

Prove Bolzano-Weierstrass theorem.

Bushy Results

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

ProofWatch++: Watchlist Guidance for E prover (and some Machine I 56/60

MPTP Challenge Results

Run E for 15 seconds or 40,000 given clause loops. With 10 strategies. 252 problems total.

57/60

伺下 イヨト イヨト

ProofWatch++: Watchlist Guidance for E prover (and some Machine I

- 195 Baseline strategies
- 200 Watchlist strategies (pref)
- 202 ENIGMA
- 205 ENIGMA + Watchlist strategies

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan

Next challenge: MPTP2078

- Also Bolzano-Weierstrass theorem.
- But all theorems from the 33 relevant Mizar articles.
- Baseline strategies prove 1461: too much for ProofWatch to handle

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan 58/60

ProofWatch++: Watchlist Guidance for E prover (and some Machine L 58/60

4 3 4 4 3 4

Next challenge: MPTP2078

- Also Bolzano-Weierstrass theorem.
- But all theorems from the 33 relevant Mizar articles.
- Baseline strategies prove 1461: too much for ProofWatch to handle
- How to construct good proof vectors?

ProofWatch++: Watchlist Guidance for E prover (and some Machine I Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan 59/60

Proof Vector Construction Ideas

- Use k-NN as in ProofWatch: large proof vector with many zeros in each case.
- Use K-means to cluster theorems/proofs into sufficiently small sets.
- Seek generic 'basis' vector for all 1461 proofs.
 - Initial k-mediods experiment failed :'(.

Zarathustra Goertzel, Jan Jakubův, Josef Urban, Stephan 60/60