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Learning From Mizar Proofs

We work with
● Mizar Mathematical Library (MML) contains 1148 articles:

● including Bolzano-Weierstrass and Gödel's completeness theorem

● An interactive theorem proving system

● Evaluate on 5000 (out of 57897) Mizar theorems and top-level 
lemmas
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Learning From Mizar Proofs

● MML contains De Morgan’s laws in Boolean algebra, and the related 
inequalities in Heyting algebras
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Learning From Mizar Proofs

We work with
● Mizar Mathematical Library (MML)

● An Interactive Theorem Proving system
● Evaluate on 5000 (out of 57897) Mizar theorems and top-level lemmas

● E prover
● Saturation based automated theorem prover (ATP)
● Can be a hammer for interactive theorem proving (ITP)
● Uses Mizar in first order formula (FOF) form
● We learn from E proof clauses in conjunctive normal form (CNF)
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                 Results Overview

On our 5000 problem benchmark, E proves:

● Baseline strategy:                              1140
● ProofWatch (symbolic learning):        1356 (+19%)
● ENIGMA (statistical learning):            1557 (+37%)
● ENIGMAWatch (combined learning):  1694 (+49%)
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Outline of talk

● Brief overview of E prover.

● ENIGMA (Efficient learNing-based Inference 
Guiding Machine)

● ProofWatch: Dynamic Watchlist Guidance
● ENIGMAWatch: ProofWatch → Enigma

● Experiments + Results
● Conclusion
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E Prover (a Saturation-based ATP)

● Goal: Prove conjecture from premises.
● E has two sets of clauses:

● Processed clauses P (initially empty)
● Unprocessed clauses U (Negated Conjecture and Premises)

● Given Clause Loop:
● Select ‘given clause’ g to add to P 
● Apply inference rules to g and all clauses in P
● Process new clauses. Add non-trivial and non-redundant ones to U.

● Proof search succeeds when empty clause is inferred.
● Proof consists of some of the given clauses.
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Given Clause Loop in E

Image thanks to Stephan Schulz
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  E Strategies

● Consist of Clause Evaluation Functions:
● Priority functions: partition clauses into priority queues.

● e.g., PreferUnit, ConstPrio

● Weight functions: order clauses in queues based on a score.
● e.g.: Clauseweight, FIFOWeight

●  Weighted by frequency of use, for example:

 -H(2*Clauseweight(PreferWatchlist,20,9999,4)
     ,4*FIFOWeight(PreferUnit))
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      Learning Given Clause Selection

ENIGMA
● Statistical Learning
● Learns from given-clauses
● Positive and Negative
● Maps clauses to vectors
● Weight function
● No proof state
● Ranks all clauses

ProofWatch
● Symbolic Learning
● Learns from given-clauses
● Positive only (proof clauses)
● Uses clauses as is
● Priority function
● Yes proof state
● Only ranks some clauses
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ENIGMA

● Use statistical machine learner to select given 
clauses

● Input: 
● Positive examples + conjecture features
● Negative examples + conjecture features

● Output:
● (Fast) model to predict whether (clause, conjecture) 

pairs are positive or negative.
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Clauses  Vectors

● Treat clauses as trees. Abstract vars and skolem symbols

● Vertical Features are descending paths of length 3

For example:
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Clauses  Vectors
● Enumerate features →                   
● Count features in a clause for its vector
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                    Feature Types

● Vertical :- top-down tree-walks

● Horizontal :- cuts of term tree

● Symbol :- occurrence/depth statistics

● Length :- clause length, #pos/neg literals

●  . . .
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           Feature Vector Hashing

● Feature vectors on MML exceed 1,000,000 

● So we reduce the size to 32,768 (      )

● by adapting a string hash function from SDBM project
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ENIGMA

● Train statistical learner to select given-clauses

● Enumerate feature map π: feature → R
● Input: 

● Positive examples   + conjecture features
● Negative examples + conjecture features

● Output:
● Model M to predict whether (clause, conjecture) 

pairs are positive or negative.
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  ENIGMA Weight Function

● Feature vector φ = (φC,φG)

● φC = π(clause)

● φG = π(conjecture)

● weight(C) = 1 if M(φ) >  0.5 else 10

● It would be good to include the proof-state in φ.
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           ENIGMA’s Machine Learner

We currently use XGBoost, a gradient boosted tree 
algorithm that

● learns k decision trees to classify data
● sums the k trees’ decisions to determine the 

ensemble estimate
● maintains a histogram of the features to choose 

splitting points for creating trees 
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              XGBoost Example Tree
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 Watchlists

 A watchlist is a set of clauses loaded into the ATP.
 Logical subsumption is used to check the watchlist.
 For example:

 Let W = 

 Let C  =
 

  Then C  W (with X = zar)⊑

 We say clause C matches the watchlist if it 
subsumes a clause on the watchlist.
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 Brief Watchlist History

1. Hint list used by Bob Veroff (96)
● In Prover9 and Otter (ATPs).
● Has proven extensions of AIM conjecture (Abelian Inner 

Mapping) in loop theory.
● Enabled very long proofs (1000+ steps) 

2. E’s watchlist mechanism implemented by Stephan 
Schulz.

● Uses a priority function: PreferWatchlist
● All clauses that match a watchlist are selected first.
● Works with any E weight function. 



22

ProofWatch (static)

● Uses E’s watchlist feature.
● Loads proof clauses onto watchlist:

● Positive examples only.

● Used via PreferWatchlist.
● All matched clauses given the same priority.
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 ProofWatch (dynamic)

● Extends E’s watchlist feature to multiple watchlists.
● Loads k proofs onto k watchlists.
● Counts matches to each watchlist during proof-search

● progress(W)

● Assumption: completion ratio (progress(Wi)/|Wi|) 
approximates relevance of Wi’s proof to conjecture.
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 ProofWatch (dynamic)

● Loads k proofs onto k watchlists.
● Counts matches to each watchlist during proof-search

● progress(W)

● Assumption: completion ratio (progress(Wi)/|Wi|) 
approximates relevance of Wi’s proof to conjecture.

● Boosts priority as a function of relevance.
● Used with PreferWatchlistRelevant.
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Watchlist Curation

In the ProofWatch paper we

1. Used E proofs from the conjecture’s Mizar article.

2. Used Enigma features with k-NN (k nearest 
neighbors) to recommend similar proofs.
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ProofWatch Results
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 Proof Vector

A snapshot of the proof-vector for YELLOW 5:36 with 
32 k-NN recommended proofs:

Proof Number Completion Ratio
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           Multi-index Subsumption

● 32 proofs is pretty small, right?
● E crawled to a halt with more than 4000 clauses or 

128 proofs on the watchlist
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           Multi-index Subsumption

● Define code(C) = {top-level predicate symbols)
● code(                                          ) =  

●

● Create an index for each clause code in the watchlist.
● Given clause C, check subsumption in each index 

whose code contains code(C).
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           Multi-index Subsumption

multi time multi # subsumptions

single single
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ENIGMAWatch

Idea: ProofWatch’s proof-vector can capture some 
proof-state information. Give this to ENIGMA.
● Feature vector φ = (φC,φG,φπ)

● φC = π(clause)

● φG = π(conjecture)

● φπ = proof-vector of completion ratios

Challenge: ENIGMA needs uniform vector space for 
features to learn over “big data”. 
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    Mizar Mathematical Library (MML)

● 57,897 Mizar theorems and top-level lemmas

● Premises already selected

● Previously  ENIGMAWatch was tested on the MPTP 
Challenge Benchmark:

● The 252 Mizar lemmas used to prove Bolzano-Weierstrass 
theorem.
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           Proof Vector Construction

We want:
● Proofs that will be useful over the whole MML
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           Proof Vector Construction

We want:
● Proofs that will be useful over the whole MML

Step 1:
● Run E with 14,882 proofs loaded as watchlists
● For each Conjecture’s proof search,

● For each given-clause,
● For each watchlist proof,

● How many proof-clauses were subsumed at the time g was selected?
● The proof-vectors of completion ratios: 
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           Proof Vector Construction

Step 1:
● Run E with 14,882 proofs loaded as watchlists
● For each Conjecture’s proof search,

● For each given-clause,
● Proof-vectors:         (over the 15k proofs)

Step 2:
● Sum over given-clauses to obtain mean proof-vectors
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           Proof Vector Construction

Step 2:
● Sum over given-clauses to obtain mean proof-vectors

Step 3:
● Choose the “best” 512 watchlists based on 
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           Proof Vector Construction

Step 3:
● Choose the “best” 512 watchlists based on

Methods: Stack        into matrix M
● Mean: mean proof-vector across rows, i.e., 
● Var: compute variance of each watchlist      over conjectures
● Corr: find least correlated proofs      by computing Pearson 

correlation matrix of 
● Rand: randomly select 512 watchlists to use



38

          Experiments 

● Baseline is the strongest ProofWatch strategy so far.

● The time limit is 60 seconds
● With a 30,000 generated clause limit.

● Which Baseline does can do in 10 seconds.
● Abstract time

● Training and tests are done on 5000 problems from 
Mizar
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  Results
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  Results
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                         Results
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                        Results
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                     Conclusion

● Feature Hashing and Multi-Index Subsumption allow 
ENIGMA and ProofWatch to be run on full MML with 
large watchlists. 

● ENIGMAWatch:
● Proves more problems than ENIGMA in early loops
● Trains faster
● Provides complementarity with ENIGMA (good for scheduling)

● Good paradigm of merging symbolic and statistical 
machine learning.
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