
ENIGMAWatch:
ProofWatch Meets ENIGMA

Zarathustra Goertzel, Jan Jakubův, and Josef Urban

Czech Technical University in Prague

TABLEAUX 2019



2

Learning From Mizar Proofs

We work with
● Mizar Mathematical Library (MML) contains 1148 articles:

● including Bolzano-Weierstrass and Gödel's completeness theorem

● An interactive theorem proving system

● Evaluate on 5000 (out of 57897) Mizar theorems and top-level 
lemmas



3

Learning From Mizar Proofs

● MML contains De Morgan’s laws in Boolean algebra, and the related 
inequalities in Heyting algebras



4

Learning From Mizar Proofs

We work with
● Mizar Mathematical Library (MML)

● An Interactive Theorem Proving system
● Evaluate on 5000 (out of 57897) Mizar theorems and top-level lemmas

● E prover
● Saturation based automated theorem prover (ATP)
● Can be a hammer for interactive theorem proving (ITP)
● Uses Mizar in first order formula (FOF) form
● We learn from E proof clauses in conjunctive normal form (CNF)



5

                 Results Overview

On our 5000 problem benchmark, E proves:

● Baseline strategy:                              1140
● ProofWatch (symbolic learning):        1356 (+19%)
● ENIGMA (statistical learning):            1557 (+37%)
● ENIGMAWatch (combined learning):  1694 (+49%)



6

Outline of talk

● Brief overview of E prover.

● ENIGMA (Efficient learNing-based Inference 
Guiding Machine)

● ProofWatch: Dynamic Watchlist Guidance
● ENIGMAWatch: ProofWatch → Enigma

● Experiments + Results
● Conclusion



7

E Prover (a Saturation-based ATP)

● Goal: Prove conjecture from premises.
● E has two sets of clauses:

● Processed clauses P (initially empty)
● Unprocessed clauses U (Negated Conjecture and Premises)

● Given Clause Loop:
● Select ‘given clause’ g to add to P 
● Apply inference rules to g and all clauses in P
● Process new clauses. Add non-trivial and non-redundant ones to U.

● Proof search succeeds when empty clause is inferred.
● Proof consists of some of the given clauses.



8

Given Clause Loop in E

Image thanks to Stephan Schulz



9

  E Strategies

● Consist of Clause Evaluation Functions:
● Priority functions: partition clauses into priority queues.

● e.g., PreferUnit, ConstPrio

● Weight functions: order clauses in queues based on a score.
● e.g.: Clauseweight, FIFOWeight

●  Weighted by frequency of use, for example:

 -H(2*Clauseweight(PreferWatchlist,20,9999,4)
     ,4*FIFOWeight(PreferUnit))



10

      Learning Given Clause Selection

ENIGMA
● Statistical Learning
● Learns from given-clauses
● Positive and Negative
● Maps clauses to vectors
● Weight function
● No proof state
● Ranks all clauses

ProofWatch
● Symbolic Learning
● Learns from given-clauses
● Positive only (proof clauses)
● Uses clauses as is
● Priority function
● Yes proof state
● Only ranks some clauses



11

ENIGMA

● Use statistical machine learner to select given 
clauses

● Input: 
● Positive examples + conjecture features
● Negative examples + conjecture features

● Output:
● (Fast) model to predict whether (clause, conjecture) 

pairs are positive or negative.



12

Clauses  Vectors

● Treat clauses as trees. Abstract vars and skolem symbols

● Vertical Features are descending paths of length 3

For example:



13

Clauses  Vectors
● Enumerate features →                   
● Count features in a clause for its vector



14

                    Feature Types

● Vertical :- top-down tree-walks

● Horizontal :- cuts of term tree

● Symbol :- occurrence/depth statistics

● Length :- clause length, #pos/neg literals

●  . . .



15

           Feature Vector Hashing

● Feature vectors on MML exceed 1,000,000 

● So we reduce the size to 32,768 (      )

● by adapting a string hash function from SDBM project



16

ENIGMA

● Train statistical learner to select given-clauses

● Enumerate feature map π: feature → R
● Input: 

● Positive examples   + conjecture features
● Negative examples + conjecture features

● Output:
● Model M to predict whether (clause, conjecture) 

pairs are positive or negative.



17

  ENIGMA Weight Function

● Feature vector φ = (φC,φG)

● φC = π(clause)

● φG = π(conjecture)

● weight(C) = 1 if M(φ) >  0.5 else 10

● It would be good to include the proof-state in φ.



18

           ENIGMA’s Machine Learner

We currently use XGBoost, a gradient boosted tree 
algorithm that

● learns k decision trees to classify data
● sums the k trees’ decisions to determine the 

ensemble estimate
● maintains a histogram of the features to choose 

splitting points for creating trees 



19

              XGBoost Example Tree



20

 Watchlists

 A watchlist is a set of clauses loaded into the ATP.
 Logical subsumption is used to check the watchlist.
 For example:

 Let W = 

 Let C  =
 

  Then C  W (with X = zar)⊑

 We say clause C matches the watchlist if it 
subsumes a clause on the watchlist.



21

 Brief Watchlist History

1. Hint list used by Bob Veroff (96)
● In Prover9 and Otter (ATPs).
● Has proven extensions of AIM conjecture (Abelian Inner 

Mapping) in loop theory.
● Enabled very long proofs (1000+ steps) 

2. E’s watchlist mechanism implemented by Stephan 
Schulz.

● Uses a priority function: PreferWatchlist
● All clauses that match a watchlist are selected first.
● Works with any E weight function. 



22

ProofWatch (static)

● Uses E’s watchlist feature.
● Loads proof clauses onto watchlist:

● Positive examples only.

● Used via PreferWatchlist.
● All matched clauses given the same priority.



23

 ProofWatch (dynamic)

● Extends E’s watchlist feature to multiple watchlists.
● Loads k proofs onto k watchlists.
● Counts matches to each watchlist during proof-search

● progress(W)

● Assumption: completion ratio (progress(Wi)/|Wi|) 
approximates relevance of Wi’s proof to conjecture.



24

 ProofWatch (dynamic)

● Loads k proofs onto k watchlists.
● Counts matches to each watchlist during proof-search

● progress(W)

● Assumption: completion ratio (progress(Wi)/|Wi|) 
approximates relevance of Wi’s proof to conjecture.

● Boosts priority as a function of relevance.
● Used with PreferWatchlistRelevant.



25

Watchlist Curation

In the ProofWatch paper we

1. Used E proofs from the conjecture’s Mizar article.

2. Used Enigma features with k-NN (k nearest 
neighbors) to recommend similar proofs.



26

ProofWatch Results



27

 Proof Vector

A snapshot of the proof-vector for YELLOW 5:36 with 
32 k-NN recommended proofs:

Proof Number Completion Ratio



28

           Multi-index Subsumption

● 32 proofs is pretty small, right?
● E crawled to a halt with more than 4000 clauses or 

128 proofs on the watchlist



29

           Multi-index Subsumption

● Define code(C) = {top-level predicate symbols)
● code(                                          ) =  

●

● Create an index for each clause code in the watchlist.
● Given clause C, check subsumption in each index 

whose code contains code(C).



30

           Multi-index Subsumption

multi time multi # subsumptions

single single



31

ENIGMAWatch

Idea: ProofWatch’s proof-vector can capture some 
proof-state information. Give this to ENIGMA.
● Feature vector φ = (φC,φG,φπ)

● φC = π(clause)

● φG = π(conjecture)

● φπ = proof-vector of completion ratios

Challenge: ENIGMA needs uniform vector space for 
features to learn over “big data”. 



32

    Mizar Mathematical Library (MML)

● 57,897 Mizar theorems and top-level lemmas

● Premises already selected

● Previously  ENIGMAWatch was tested on the MPTP 
Challenge Benchmark:

● The 252 Mizar lemmas used to prove Bolzano-Weierstrass 
theorem.



33

           Proof Vector Construction

We want:
● Proofs that will be useful over the whole MML



34

           Proof Vector Construction

We want:
● Proofs that will be useful over the whole MML

Step 1:
● Run E with 14,882 proofs loaded as watchlists
● For each Conjecture’s proof search,

● For each given-clause,
● For each watchlist proof,

● How many proof-clauses were subsumed at the time g was selected?
● The proof-vectors of completion ratios: 



35

           Proof Vector Construction

Step 1:
● Run E with 14,882 proofs loaded as watchlists
● For each Conjecture’s proof search,

● For each given-clause,
● Proof-vectors:         (over the 15k proofs)

Step 2:
● Sum over given-clauses to obtain mean proof-vectors



36

           Proof Vector Construction

Step 2:
● Sum over given-clauses to obtain mean proof-vectors

Step 3:
● Choose the “best” 512 watchlists based on 



37

           Proof Vector Construction

Step 3:
● Choose the “best” 512 watchlists based on

Methods: Stack        into matrix M
● Mean: mean proof-vector across rows, i.e., 
● Var: compute variance of each watchlist      over conjectures
● Corr: find least correlated proofs      by computing Pearson 

correlation matrix of 
● Rand: randomly select 512 watchlists to use



38

          Experiments 

● Baseline is the strongest ProofWatch strategy so far.

● The time limit is 60 seconds
● With a 30,000 generated clause limit.

● Which Baseline does can do in 10 seconds.
● Abstract time

● Training and tests are done on 5000 problems from 
Mizar



39

  Results



40

  Results



41

                         Results



42

                        Results



43

                     Conclusion

● Feature Hashing and Multi-Index Subsumption allow 
ENIGMA and ProofWatch to be run on full MML with 
large watchlists. 

● ENIGMAWatch:
● Proves more problems than ENIGMA in early loops
● Trains faster
● Provides complementarity with ENIGMA (good for scheduling)

● Good paradigm of merging symbolic and statistical 
machine learning.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

